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Does  modeling  matter?  We  address  this  question  by  providing  a
broad  survey  of  the  computational  models  of  cognitive  develop-
ment  that  have  been  proposed  and  studied  over  the  last  three
decades.  We  begin  by  noting  the  advantages  and  limitations  of  com-
putational  models.  We  then  describe  four  key  dimensions  across
which  models  of  development  can  be organized  and  classified.  With
this  taxonomy  in  hand,  we  focus  on how  the  modeling  enterprise
has evolved  over  time.  In  particular,  we  separate  the  timeline  into
three  overlapping  historical  waves  and  highlight  how  each  wave
of  models  has  not  only  been  shaped  by  developmental  theory  and
behavioral  research,  but in  return  also  provided  valuable  insights
and  innovations  to the  study  of  cognitive  development.
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Although computational models of learning and development existed before 1986, the PDP “bible”
not only made connectionism a household word (among psychologists), but also catalyzed the emer-
gence of modern developmental science. It restored learning as a core topic in cognitive science by
introducing more powerful learning rules that enabled the development of internal representations.
This evolution cogently illustrated the concept of emergence:  Connectionist networks could, in some
ways, develop themselves (McClelland, 2010). Perhaps most importantly, the PDP volumes illustrated
the power of computational modeling as a tool for inquiry into the mechanisms of development.

Historically, most work in developmental science has combined careful observation/description of
children and their environments (in all their glorious complexity) with well-controlled experiments
attempting to distill some of these factors. In this context, what can a handful of equations or a simple
algorithm offer, beyond what these methods already provide? The 25th anniversary of PDP presents
the developmental community with an opportune moment to address this question by raising a series
of important issues about the computational modeling enterprise (and not just connectionism): Why
do we construct models? How has this enterprise changed? What can they teach us? And what have
they taught us?

Our goal is to address these questions by surveying the history of computational models of cog-
nitive development to highlight three themes. First, the array of modeling approaches available to
developmental scientists has grown to cover a broad landscape of timescales, domains, and theo-
retical perspectives. But the consequence is not simply better or more diverse computing devices;
rather, this diversity reflects increasingly creative and subtle theoretical development. Second, com-
putational models have not only provided tests for theoretical accounts, but also generated insights
and predictions that transcend the models themselves. Third, and perhaps most importantly, the very
nature of the computational enterprise has evolved, as researchers have migrated from computa-
tional models as a tool for description and implementation of theory to models as a tool for inquiry
and experimentation about theory.

We  begin by describing the modeling enterprise, offering principles for evaluating and interpreting
models. These have evolved along with more specific modeling approaches, and it is useful to bear them
in mind. We  next present a taxonomy of modeling paradigms. Here, our objective is to illustrate the
complementarity between particular approaches and specific developmental domains and timescales.
We then shift to a chronological perspective, describing three major waves since the mid-1980s. We
highlight not only how computational models have improved, but also how this refinement is the
result of interaction between model-testing, empirical research and theoretical development. Finally,
we return to our three themes, to reflect on the progress of the last 25 years and to consider the future
of developmental models.

1. (Why) does modeling matter?

Oakes, Newcombe, and Plumert (2009) asked, “Are dynamic systems and connectionist approaches
an alternative to Good Old-Fashioned Cognitive Development?” The outcome of their analysis is opti-
mistic, but the question is reasonable, particularly as dynamic systems and connectionism are not
just theories of development, but particular ways of using modeling to understand it. Although many
who study development are open-minded about the use of models, they are not yet convinced that
computation adds value to the research enterprise.

Computational modeling will never supplant conventional behavioral methods. Rather, it comple-
ments such methods by answering questions about mechanism that are not immediately accessible
to experimentation. Braitenberg (1984) offers an example. He describes a series of mechanical “crea-
tures” (see Fig. 1) and uses them to illustrate both the power of simple mechanisms working in concert
over time and the unique contribution of computational models:

It is pleasurable and easy to create little machines that do certain tricks. It is also quite easy to
observe the full repertoire of behavior of these machines—even if it goes beyond what we  had
originally planned, as it often does. But it is much more difficult to start from the outside and
try to guess internal structure just from the observation of behavior. It is actually impossible in
theory to determine exactly what the hidden mechanism is without opening the box, since there
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Fig. 1. Two examples of Braitenberg’s Vehicles. When a light source is directly in front of them, both will approach it. If the
light  source is off to one side, however, (A) will turn away from it, while (B) will approach it. When allowed to move over time,
such vehicles can show emergent behavior like light-loving, or light-fearing, with only minimal connections, receptors and
actuators.

are always many different mechanisms with identical behavior. . . .analysis is more difficult than
invention in the sense in which, generally, induction takes more time to perform than deduction:
in induction one has to search for the way, whereas in deduction one follows a straightforward
path. (p. 20)

As an example of this process, imagine two simple creatures like those in Fig. 1. Assume the speed
of each creature’s wheels varies as a function of the distance from each sensor to a light source in the
environment. In the case of the first creature (A) a light on the right causes faster spinning of the right
wheel, which drives the creature away from the light. In the second case (B), where each sensor now
drives the wheel on the opposite side, a light on the right causes faster spinning of the left wheel, which
drives the creature toward the light. Thus, a small change in the connections between the sensors and
motors leads to a qualitatively different behavior pattern. In a similar fashion, Braitenberg describes
a progression of relatively minor modifications to his creatures, each one resulting in a new and often
surprising behavior, like violence (attacking a light source), fear (retreating), restlessness and even
love and attachment.

Thus, a fundamental motivation for computational modeling is that it offers relative freedom over
the mechanisms built into the model (and the environment it experiences), coupled with the ability
to observe the (sometimes nonobvious) consequences of such choices. This allows us to investigate
the functioning of hypothesized mechanisms, working from the inside out, rather than the outside in.
Of equal importance, modeling also offers the advantage of being able to start with a relatively simple
model that becomes progressively elaborated through an iterative design ⇒ test ⇒ refine process, what
Braitenberg calls “downhill invention.”

To broaden this discussion beyond Braitenberg, there are several other motivations of modeling as
a tool for investigating development. First, model-building forces researchers to explicitly define theo-
retical constructs (and the causal relations between them, i.e., developmental mechanisms). We  do not
always know the consequences of our theoretical commitments, particularly in the context of multiple
interacting mechanisms. Thus, sometimes, the only way to understand their implications is to formal-
ize them mathematically. However, models and behavioral experiments are mutually informative.
Models implement theories, provide sufficiency proofs, generate predictions, and answer questions
about theories. Behavioral studies evaluate these predictions and provide a metric for comparing mod-
els. Also, they can help us understand processes even when the theory is not well-specified enough to
build a model.

Second, the most theoretically informative models can be thrown away. A successful model should
offer an explanation in the language of developmental science, without relying on modeling jargon,
specific mathematical algorithms, or cognitive architectures. For example, Munakata, McClelland,
Johnson, and Siegler (1997) describe a recurrent neural network that is used to study the devel-
opment of object permanence in infants. A key lesson from the model – independent of the specific
architecture – is that relatively advanced skills such as reaching may  require stronger internal repre-
sentations than more basic skills such as visual tracking.



M. Schlesinger, B. McMurray / Cognitive Development 27 (2012) 326– 348 329

Similarly, models that fail to capture a phenomenon are also informative. Models that are implau-
sible, non-parsimonious or perform poorly may  reveal constraints on learning that are exploited over
development. For example, the failure of a standard statistical learning model to learn speech cat-
egories has suggested the need to buttress statistical learning with online competition (McMurray,
Aslin, & Toscano, 2009). Similarly, the failure of Elman’s (1993) simple recurrent network (Wave 2 mod-
els) to learn simple grammars led to the idea that a limited memory capacity early in development
may  be beneficial.

Third, models can bridge levels of analysis. In particular, a core commitment of developmental
systems theory (Gottlieb, 1997; Johnston & Edwards, 2002; Oyama, Griffiths, & Gray, 2001; Spencer,
Blumberg, et al., 2009; Spencer, Thomas, et al., 2009) is that explanations of developmental change
often span levels of analysis – genes-to-neurons, neurons-to-brains, brain-to-behavior and back again.
Computational models can play a critical role in developing coherent explanations that span these
levels.

Finally, models do not have to capture life-as-it-is. Unlike their human counterparts, computa-
tional models (and simulated organisms) are open to a much wider range of experiences. They can
also be exposed to unnatural inputs, or “broken” or manipulated in ways that cannot be done with
humans. This makes them an ideal tool for investigating phenomena such as critical periods, sensory
deprivation, atypical development, and so on – variation that cannot always be studied empirically.

All this is not to say that modeling is without pitfalls. Beyond technical skills, modeling is a com-
plex theoretical skill. Designing a useful model requires constraining model development with more
abstract commitments (e.g., parallel processing, incremental learning), and simultaneously using the
model to answer theoretical questions. It is tempting to “rig” the model, as modelers may  sometimes
explicitly select the parameters of a model to match a target behavior and fail to fully explore the
parameter-space (although see Apfelbaum & McMurray, 2011; Pitt, Kim, Navarro, & Myung, 2006).
Models can also be reified when the model and the real-world phenomenon are treated as isomor-
phic. And it can be tempting to construct more and more sophisticated models that can do more and
more things, without really answering any new questions.

Ultimately, however, it is what we do with a model that is most crucial for advancing our science.
A particularly compelling approach is to compare alternative models. For example, Shultz (2003)
describes a series of developmental tasks (e.g., the balance scale, conservation of number) and presents
systematic comparisons or bakeoffs between alternative modeling approaches on each of these tasks.
One can also compare competing versions of the same model. For example, McMurray, Samelson,
Lee, and Tomblin (2010) compare about a dozen versions of the TRACE model of speech perception
(McClelland & Elman, 1986) to data on word recognition in language impairment to determine how
best to characterize their deficits. Unfortunately, this is done only rarely, as model-builders typically
focus on a preferred paradigm (perhaps due to the complexities of mastering two), and even when
models are compared explicitly, it is often not clear what can be learned (other than which model
is better). The single-model studies that are the norm can still be valuable for the aforementioned
reason. But when they are highly abstract and complex, opaque to non-specialists, and difficult to
disseminate outside the modeling community, their impact can be muted.

2. A taxonomy of developmental models in four dimensions

Most computational models start from a set of core theoretical commitments, things like parallel
processing, neuron-like units and so forth, and use these principles to constrain model construction.
In this way, one of the most common questions asked by a model is whether some phenomena can
emerge from, or be accounted for, by such principles. Thus, understanding a specific model is often
as much a matter of understanding the paradigm as it is the model. Here we  highlight four dimen-
sions that describe modeling paradigms: the type of representation, the way change is described, the
mechanism of learning, and the time-scale in which change occurs. While the first two dimensions
broadly distinguish most of the modeling paradigms in use (see Fig. 2), the last two are crucial for
understanding specific models.
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Fig. 2. A compression of our four-dimensional taxonomy of models into a two-dimensional space of model architectures. The
figure  illustrates where a number of common architectures are positioned with respect to the symbolic/sub-symbolic distinction
and  with respect to the static/adaptive distinction.

2.1. Representation: symbolic vs. sub-symbolic

A critical issue is how knowledge (sensory data, experience, memory, beliefs, plans) is represented.
Historically, two approaches have addressed this issue, symbolic (Klahr & MacWhinney, 1998) and
sub-symbolic (Rumelhart & McClelland, 1986b)  models. Symbolic models treat knowledge as discrete
units of information that are encoded in a language-like format. A well-known symbolic model is
the production-system model (Klahr, Langley, & Neches, 1984). Productions are if-then or condition-
action rules that guide decision-making, reasoning, and planning. For example, Klahr and Siegler’s
(1978) model of Piaget’s balance-scale task uses rules like “if the weights on each side of the scale are
unequal, then the side with the larger weight will tip.” Other symbolic models of cognition include
SOAR (Newell, 1990) and ACT-R (Anderson, 1993).

As symbolic models represent knowledge propositionally, they are well-suited to phenomena
involving verbal reasoning (e.g., Piaget’s conservation tasks). However, it is not always clear how
developmental change occurs in such a framework. In response to this limitation, a relatively new
class of symbolic models are Bayesian networks (Gopnik & Tenenbaum, 2007; Perfors, Tenenbaum,
Griffiths, & Xu, 2011; Xu & Tenenbaum, 2007), which acquire explicit knowledge using the laws of
rational probabilistic inference (Fig. 2). We  return to these models in the next section, where we
describe their application to language acquisition.

The alternative to symbolic representations is sub-symbolic or distributed representations. Artifi-
cial neural networks are an example. In these networks, representations emerge as a pattern of activity
distributed over a set of computing elements (i.e., neuron-like units) and their connections. Crucially,
these activity patterns and/or connections are not usually discrete and do not always correspond to
rational symbol systems. In addition, instead of devoting a particular unit to a specific representation,
each unit typically participates (to some degree) in representations for many inputs.

For example, we describe several connectionist models of Piaget’s balance-scale task (McClelland
& Jenkins, 1991; Shultz, Mareschal, & Schmidt, 1994). Each of these models receives as input a set
of continuous values that encodes the positions and amounts of weights placed on each side of the
scale. These values are propagated to the next layer in the network, creating an internal pattern of
activity that serves as the representation for that particular input pattern. Crucially, these internal
representations are highly overlapping with every node used (in part) to represent every input. This
makes it difficult to point to any single part of the internal representation as representing a certain
thing; rather representation is distributed across the network in a sort of graded way. While network
models like these do not explicitly encode knowledge in a rule-like format, they are nevertheless
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able to capture both conscious, rule-based behavior and also sensorimotor, implicit, or procedural
knowledge (e.g., Shultz, 2003), and often in the same set of pathways (Seidenberg, 2005).

2.2. Adaptive vs. static models

Another important issue is whether the internal structure of the model (parameters or architectural
properties) changes over time. Models that change are adaptive, as they improve or shift their response
patterns over encounters with a set of inputs. In network models there are two ways to achieve this
– changes in the strength of the connections between units, and changes in the architecture of the
network, e.g., the appearance of new units (Quartz and Sejnowski, 1998; Shultz, Schmidt, Buckingham,
& Mareschal, 1995). Adaptive approaches are not limited to connectionism, however. For example,
Halford et al. (1995) propose a production-system model of transitive inference in which productions
adjust their probability of “firing” as a function of performance on the task; and Bayesian approaches
acquire statistics over the input to select the appropriate knowledge structure.

The alternative to adaptive models are static models. They maintain fixed internal parameter values
and structure to capture behavior at a particular developmental time point (i.e., a specific age on a
particular task). An example of this is INFANT (Simon, 1998), a modified version of ACT-R that simulates
infants’ perception of addition and subtraction events (Simon, Hespos, & Rochat, 1995; Wynn, 1992).
While using static models to capture development seems counterintuitive, such models make the
valuable point that just because one is studying children not all explanations need be developmental.
Children, like adults, engage in online processes such as attention, selection, and competition. To
the extent that such processes can account for a complex pattern of data without developmental
change, they serve as a powerful reminder that we must integrate online and developmental timescales
(McMurray, Horst, & Samuelson, in press; McMurray, Horst, Toscano, & Samuelson, 2009; McMurray
et al., 2010).

Our use of the term adaptive is intended to highlight models that capture change on the devel-
opmental timescale. Nevertheless, as Fig. 2 illustrates, the adaptive-static dimension is a continuum
rather than a dichotomy. Models that are capable of self-modification on the developmental timescale
are situated toward the adaptive end of the continuum, while those that have fixed internal parameters
and/or structures fall toward the static end. A number of models can be situated between these two
extremes. Several models focus on behavioral change at the microgenetic or real-time level. Although
these models do not develop or learn in the same sense that adaptive models do, their internal states
do vary dynamically over time, in response not only to short-term changes in input, but also to mem-
ory “traces” of the internal states themselves (McClelland & Elman, 1986; Thelen, Schöner, Scheier, &
Smith, 2001).

A related factor is how parameters within the model are modified over simulated developmental
time. At the adaptive end of the continuum, the model-builder plays a minimal role in this process, by
specifying the model architecture and learning algorithm and then allowing the model’s output and
performance to dictate the developmental trajectory (via incremental updates to the internal param-
eters or structure of the model). An intermediate case includes models whose internal parameters are
modified over time, but in a relatively rigid way that does not depend systematically on the model’s
experience or performance level. In this case, such models are referred to as hand-tuned. A well-known
example of a hand-tuned model is Elman’s “starting small” connectionist network (1993), which illus-
trates the benefit of gradually increasing the model’s short-term memory on its ability to perform
a sentence-processing task. Another example is provided by Schlesinger, Amso, and Johnson (2007),
who simulate the performance of young infants on a visual-search task. In this case, hand-tuning of
model parameters is used as a proxy for the growth of corresponding neural components in early
visual processing (Schutte, Spencer, & Schöner, 2003).

2.3. Supervised vs. unsupervised learning

Within the category of adaptive models are two  strategies for simulating learning or development.
Supervised-learning models learn through interaction with a “teacher” that provides explicit feed-
back. The backpropagation-of-error (or “backprop”) rule (Rumelhart, Hinton, & Williams, 1986) is an
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example of such a learning rule from connectionism. Backprop works by comparing the output pattern
produced by the network with a desired or target pattern, and using the difference between output
and target to modify connection weights within the network (moving the network’s output closer to
the target). Essentially, the model guesses the right response, gets a signal as to what it actually is, and
adjusts itself to try to align the two. Such learning is very powerful as its ability to organize its own
internal representations, and the detailed information it receives about the “error” at each component
of the output allows it to learn complex input–output relationships. As a result, the backprop algo-
rithm is used in the vast majority of connectionist models (Elman, 1990; Seidenberg & McClelland,
1989).

Models of unsupervised learning do not include explicit feedback. One variant of unsupervised
learning is Hebbian learning. Hebb’s rule states that connections between units in a network are grad-
ually strengthened when they are active at the same time (Hebb, 1949). (Connections typically decay
when one or both is inactive.) Hebbian learning can associate two  inputs (or features of the same
input), as seen in work by Sirois, Buckingham, and Shultz (2000),  who used Hebbian learning to sim-
ulate habituation in young infants, and work by Apfelbaum and McMurray (2011),  who  showed how
association principles can account for complex interactions between speech category learning and
early word learning. Hebbian learning can also be used to associate inputs with some internal rep-
resentation as in self-organizing networks. Self-organizing networks are typically used to cluster a set
of input patterns into groups. For example, Mareschal, Plunkett, and Harris (1999) show how such
models can learn to recognize and track moving objects; McMurray, Horst, et al. (2009) show how
they can be applied to speech category learning (Guenther & Gjaja, 1996).

Between supervised and unsupervised learning is reinforcement learning (RL; Sutton & Barto,
1998). Like supervised learning, RL models generate an output and receive feedback. However, instead
of receiving information about which specific elements are mismatched between actual and ideal out-
puts, in RL models, the feedback is a more general reinforcement “score,” reflecting overall match. An
appealing feature of RL is that it corresponds well to principles of learning in psychology (e.g., pri-
mary and secondary reinforcement, extinction, stimulus generalization) and to learning systems in
the brain. Examples include work by Schlesinger (2003; Schlesinger & Parisi, 2001), who  used RL to
simulate the development of oculomotor control and the ability to track visible and occluded objects,
and by Berthier, Rosenstein, and Barto (2005),  who used RL to explore how variability influences
real-time reaching dynamics over development.

2.4. Timescales of change

The final dimension is the timescale over which the model operates. As in behavioral studies, models
span (at least) three timescales relevant to development (Table 1): real-time (seconds and minutes),
microgenetic time (hours, days), and ontogenetic time (months and years). In addition, many models
ignore time in a continuous sense all together, and instead focus on what we  call “trial-time” – the
mapping of an input to an output (no matter how long it takes) – as the minimum unit. Microgenetic
and ontogenetic time are perhaps most often studied in development. In microgenesis, a common
strategy is to construct a model that corresponds to a child at a given age and then to train the model
in a way that is analogous to experience during an experimental session. For example, Sirois et al.
(2000) use this strategy to simulate visual habituation/dishabituation, and Simon’s (1998) INFANT
model simulates the experience of an infant in Wynn’s (1992) small-number arithmetic experiment.

There are two strategies for simulating ontogenesis. One is to employ a microgenetic model that
learns over a relatively short period of time (or even a static model). To then simulate development,
the model-builder systematically changes specific parameter values, usually different parameters
than those involved in learning (i.e., “hand-tuning”). Jones, Ritter, and Wood (2000),  for example,
implemented an ACT-R model to solve a tower-building task. It begins with a set of general rules (if-
then productions) and generates new, specific rules as progress is made through the task. Differences
between age groups are then simulated by modifying parameters that constrain processing speed and
capacity.

A second strategy is to directly simulate development in a model over longer timescales
(months or years) using learning rules. Munakata’s (1998) model of the A-not-B task simulates the
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Table 1
Popular classes of models and the timescales they emphasize.

Model/approach Real-time Trial-time Microgenetic Ontogenetic Model of change

Adult Processing Models (e.g.,
Dell, 1986; McClelland &
Elman, 1986)

√ √
Static

Production systems (Klahr &
Siegler, 1978)

√
Static

Act-R/INFANT (Simon, Hespos, &
Rochat, 1995)

√ √
Static

Connectionist models of
habituation (Sirois,
Buckingham, & Shultz, 2000)

√ √
Static

Connectionist Models
(Rumelhart & McClelland,
1986a)

√  √
Adaptive

Simple Recurrent Networks
(Elman, 1990)

√ √
Adaptive

Bayesian Networks (Xu &
Tenenbaum, 2007)

√ √
In between

Growth Models (e.g., McMurray,
2007; van Geert, 1998)

√
Static

Dynamic Field Theory (Thelen,
Schöner, Scheier, & Smith,
2001)

√ √ √
Mostly static

Hebbian Normalized Recurrence
(McMurray, Horst, et al., 2009;
McMurray et al., in press)

√ √ √
Adaptive

Agent-Based Models
(Schlesinger, Parisi, & Langer,
2000)

√ √ √
Adaptive

development of gaze and reaching in 6–12-month-olds. Similarly, Mareschal and Johnson (2002) sim-
ulate the development of perceptual completion (perceiving partially occluded objects as integrated
wholes) in 2–4-month-olds. While these models simplify the environment relative to what a real infant
experiences, they also generate a rich source of data that approximates a longitudinal study with fre-
quent assessments. Model parameters can be “frozen” (held constant) at any time, while performance
is tested, allowing the model to be tested periodically without influencing subsequent learning.

In between real-time and microgenetic time, a very common simplifying assumption of many con-
nectionist and production-system models is to treat time as a series of discrete “trials”. Here, the
minimal unit is a single presentation of an input, like a word or visual scene (Elman, 1990), assuming a
somewhat instantaneous mapping to the output. Doing so bypasses the need to worry about the com-
plexity of real-time behavior or to make controversial assumptions about how many seconds elapse
for each unit of time and offers a common unit of time that is related to the functional mapping the
model is performing. However, it may  also miss the contribution of real-time processes that children
may  engage as they map  from input to output behavior.

Developmentalists rarely work with models that simulate real-time phenomena. However, this is
common in adult cognition work. Examples include models like the TRACE model of speech percep-
tion (McClelland & Elman, 1986); normalized recurrence, which has been applied to problems like
categorization, visual search and speech perception (Spivey, 2007); and interactive activation mod-
els of phenomena like speech production (Dell, 1986) and comparison (Goldstone & Medin, 1994).
These models accurately capture timescales of process at the level of milliseconds. They can offer pro-
found insight into developmental phenomena, but have rarely been considered in this light (but see
McMurray et al., 2010).

One of the few classes of models that simultaneously examine real-time behavior and development
is the Dynamic Field Theory (DFT) framework. DFT models are complex, nonlinear neural networks
that capture real-time interactions between and among layers of networks. These have been used to
explain several aspects of sensorimotor activity, including perceptual processing, motor planning, and
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the integration of short-term and long-term memory. For example, Thelen et al. (2001) propose a DFT
model of the A-not-B task. An important feature of their model is a “cooperativity” parameter, which
modulates the relative influences of perceptual input (seeing an object hidden at location B) and motor
history (prior reaches). By hand-tuning this parameter, Thelen et al. (2001) capture the development
of perseverative reaching in young infants, as well as fluctuations in behavior that occur in real-time.

3. The recent history of developmental models: three (overlapping) waves

Given these core dimensions, we now shift to a chronological perspective, examining developmen-
tal models from the last 25–30 years. We  describe three major waves of modeling work, in the sense
of Siegler’s (1996) “overlapping waves”. As in Siegler’s metaphor, successive waves reflect a trend
from simple models toward more elaborate ones. In addition, the waves overlap; subsequent waves
have not entirely replaced or eliminated earlier ones. Indeed, for some phenomena, a less-elaborate
model may  be more informative. We  have identified these waves as marking a change in the zeitgeist
of the developmental community, a new set of computational tools, a new vocabulary for express-
ing emerging ideas like distributed representation, embodied knowledge, and self-organization, or in
many cases, all three.

The scope of our survey spans roughly from the publication of the PDP volumes in 1986 to the
present. However, we begin by briefly describing the important ideas that preceded this time. We
refer to these ideas as Wave 0 (1950–1985) as they span a wide historical period and represent an
accumulation of models and events that created a foundation for subsequent work. During Wave
1 (1985–1995) many researchers focused on a narrow set of traditional neural networks as a core
platform. Wave 2 (1995–2000) was a period of rapid growth in which the relatively homogeneous
connectionist models of Wave 1 became elaborated. Finally, Wave 3 (2000–2010) simultaneously
reflects the maturation of conventional neural networks and a substantial diversification, including
the emergence of several important alternative paradigms.

3.1. Wave 0 (1950–1985): the prehistory of developmental models

At the advent of the cognitive revolution, older theories of learning as the basis of cognition were
being discarded, largely because they did not admit internal representations (but see Hebb, 1960).
In response, many researchers adopted an algorithmic view of the mind (the mind as computer),
and symbolic models of development began to be established. Simon and Newell (1962; Newell &
Simon, 1972) proposed a comprehensive framework that provided the foundation for modern infor-
mation processing theory, and simultaneously designed the General Problem Solver (GPS), a computer
program capable of reasoning and planning. The GPS is a performance (i.e., static) model, that is, it
represents problem-solving behavior as a process of search through options and alternatives. While
it was not specifically intended to model learning, Simon (1962) noted its potential as a model of
cognitive development; subsequent work led to production systems, the SOAR model, and eventually,
developmental models of planning, reasoning, and problem solving.

At the same time, classic learning approaches (Fig. 3A) were being extended beyond small sets of
discrete stimuli to multiple banks of inputs/outputs with the introduction of the perceptron,  a two-
layer neural network proposed by Rosenblatt (1958) (Fig. 3B). Perceptrons enjoyed initial success
but ten years later Minsky and Papert (1969) published a highly critical analysis demonstrating that
perceptrons are unable to compute the exclusive-OR (XOR) rule, a relatively simple logical function.
In particular, perceptrons are limited to learning input–output mappings that can be discriminated
by a linear function; XOR, in contrast, requires a non-linear mapping in order to be computed. Minsky
and Papert’s finding not only confirmed for many the insufficiency of basic learning principles, but it
also slowed research in artificial neural networks for nearly two decades, until Rumelhart et al. (1986)
were able to solve this fundamental problem with the back-propagation algorithm, setting the stage
for the connectionist revolution and Wave 1.

Rumelhart et al.’s solution included three essential innovations (Fig. 3C). First, they introduced
a middle layer of units, which is called a hidden layer and is situated between the input layer (the
sensory surface) and the output layer (the response system). While the input and output layers make
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Fig. 3. The development of connectionist models of development. (A) Basic learning theory linked stimulus to response using
simple, formal learning rules. (B) From such principles grew the perceptron, like this network mapping visual features onto
letters. Perceptrons used many more inputs and outputs, and had a much more “cognitive” flavor, often dispensing with purely
observable inputs and outputs. (C) Perceptrons failed to learn some mappings, leading Rumelhart and colleagues to develop
three-layer networks in which hidden layers could be trained via back-propagation. (D) Limitations in the way that three-layer
networks approached time led Elman to add context units and recurrence to give the network a short-term memory as in
this  network that learns sequences of letters by predicting the next letter. (E) Finally modern connectionist networks, such as
Seidenberg and colleague’s Triangle model often incorporate multiple banks of input and output units, multiple hidden units,
and  recurrence within layers to master multi-pathway systems like written word recognition.

contact with the physical world, the middle layer is buffered on each side and is therefore “hidden.”
Second, Rumelhart et al. modified the activation function used by the network. Perceptrons employ
a linear activation function such that increasing the level of input into a unit linearly increases the
output. In contrast, Rumelhart et al. proposed a non-linear, sigmoidal activation function, in which units
have a maximum input threshold; when input is beyond this threshold, the firing rate asymptotes.
Finally, and most importantly, they also proposed the generalized delta rule. This learning rule is based
mathematically on an older learning-theoretic rule (Rescorla & Wagner, 1972). However, crucially,
Rumelhart’s back-propagation algorithm allowed this rule to distribute the training signal or error-
feedback provided by the “teacher” throughout all of the connections in the network – including
connections to the hidden layer – and across units with non-linear response functions.

Two important consequences followed from these improvements. First, Rumelhart et al. (1986)
demonstrated that a 3-layer network could learn the XOR rule. Here, the hidden layer provides a
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critical advantage over 2-layer perceptrons. By “recoding” the input, the hidden layer transforms the
XOR decision task from a non-linear into a linear classifying task. Second, and more generally, it was
subsequently demonstrated that a 3-layer network can learn any arbitrary (well-defined) non-linear
function (Cybenko, 1989), solving a major critique of basic learning processes and offering an example
of how virtually any complex behavior can emerge from basic learning principles distributed over
many elements.

3.2. Wave 1 (1985–1995): connectionist nets

The first wave of developmental models took shape in the middle 1980s, largely inspired by the
PDP volumes and the revolutionary power of back-propagation. The second volume, which focused
on neural network models of specific tasks, included an influential chapter on learning the past tense
of English verbs (Rumelhart & McClelland, 1986a),  which may  be one of the first truly developmental
connectionist models. Rumelhart and McClelland described a network that was presented with the
“stem” of English verbs (using a phonological representation), and was  trained to produce the corre-
sponding past-tense verb. Notably, the model not only learned to produce the past tense for regular
verbs (help ⇒ helped), but it also learned the past tense forms for irregular verbs (go ⇒ went) using a
single set of processing pathways.

This led to two insights. First, it challenged the long-held assumption that language knowledge
must be represented by a set of rules and that development involves moving from one set of rules
to another (Pinker, 1991). The model provided an existence proof that rule-like behavior – including
transitions between putative rules – could occur in a system with only distributed, non-symbolic
representations. Second, this model captured a key developmental pattern during learning – the model
overregularized irregular verb forms that it initially learned to inflect correctly (e.g., “feel” was inflected
as “feeled”). Like human children, the model produced a U-shaped pattern of development, even
though such behavior was not explicitly built in. Subsequent work by Plunkett and Marchman (1991;
see also McClelland & Patterson, 2002) demonstrated that this U-shaped pattern emerged “for free”
from the model and was not the result of bias or systematic variation in the training sample. Perhaps
most important, the model also generated a key developmental insight that transcended the model:
Overregularization may  not be a discrete developmental stage; rather it may  be a micro-phenomenon
that occurs repeatedly with the acquisition of new verbs in the lexicon. A subsequent analysis of corpus
data supported this prediction (Marcus et al., 1992).

The past-tense model highlights a number of features typical of most first wave developmental
models. In particular, they featured a 3-layer feedforward architecture and used backprop as the
learning algorithm (Mareschal & French, 1997; McClelland & Jenkins, 1991; Quinn & Johnson, 1997).
Like many other Wave 1 models, they also emphasized an ontogenetic timescale (e.g., early childhood).

McClelland and Jenkins (1991) offer a second example of a typical Wave 1 model. They used a
3-layer network to simulate the development of children’s performance on Piaget’s balance-scale
task. Like the verb-learning model, this model also demonstrated that rule-like behavior can emerge
from a system that encodes experience in a graded and distributed pattern. However, it provided two
additional insights about development. First, McClelland and Jenkins adopted the set of four balance-
scale rules identified by Siegler (1981),  and asked whether model performance conformed to these
rules. Rule 1, for example, states, “If the weights on each side of the scale are unequal, the side with
more weight will tip.” Model performance was consistent with these rules, providing further support
for the idea that rule-based behavior can emerge from a system with distributed representations.
Second, the model progressed through the rules in the same sequence as did children. This finding
was novel and important, as it not only demonstrated a stage-like pattern of development in the model
(despite continuous, quantitative learning rules), but also illustrated that a consistent series of stages
can develop without explicitly training the stages in a particular order driven by the statistics of the
problem-space (Raijmakers, van Koten, & Molenaar, 1996; Shultz et al., 1994).

The first wave of developmental models received a number of criticisms. Backprop was  criticized in
terms of biological plausibility as well as its assumption of error feedback during learning (Sejnowski,
Koch, & Churchland, 1988; Shultz et al., 1995). A related concern focused on the relatively simple
structure of 3-layer networks, which often performed sub-optimally in comparison to networks with
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more elaborate structure. These issues provided an important influence that helped to shape the
second wave of developmental models.

3.3. Wave 2 (1995–2000): differentiation and elaboration

By the mid-1990s, the basic 3-layer architecture was  widely seen to be insufficient for solving some
learning problems and for representing things like sequences. The models that emerged during the
second wave – which largely remained within the sub-symbolic, connectionist class – addressed these
concerns by dramatically expanding and elaborating on the existing approach to include new learning
algorithms and architectures.

A key innovation was the use of recurrent networks (Elman, 1990, 1993). This innovation was
motivated by a core property of language (and many other behaviors): time. In standard connectionist
architectures, there is no clear way to represent time, and modelers adopted practices like duplicating
the network at different times slices (McClelland & Elman, 1986) or converting time into space (e.g.,
having a copy of the input layer that is tuned to different times). This was  unsatisfying in many ways
(e.g., how many copies does one need?), and made it difficult to develop effective models of sequential
behaviors.

Motivated by earlier work by Jordan (1986),  Elman (1990) developed what is now known as the
Simple Recurrent Network (SRN; Fig. 3D). SRNs are like conventional feedforward networks, with one
modification: “Backward” connections are added to the network, so that activity from one layer in the
network is routed either back (a) into the same layer (i.e., self-activation), or (b) to an earlier layer.
Architecturally, this alteration was modest. However, functionally, this gave connectionist networks
short-term or working memory for the first time.

In an SRN, the units that receive feedback from the hidden layer are called “context units” (Fig. 3D).
While input units are normally activated by stimulation from outside the network, context units
are stimulated by the internal state of the network on the last time-step, effectively maintaining an
internal representation over time and offering a computational mechanism for working memory. A
second innovation of the SRN was that rather than training them to achieve some pre-determined
output, Elman trained the SRN to predict the next input pattern. This addressed a pervasive criticism
of backprop networks – that the feedback these networks receive is far more detailed and precise than
the kind of feedback human children experience. Elman demonstrated that SRNs could learn to solve a
number of tasks that involved processing a series of input patterns over time (e.g., segmenting speech,
parsing sentences).

SRNs have since been widely used as a sort of generic sequence learner, allowing a number of impor-
tant theoretical advances that go well beyond the architecture. For example, Elman (1993) trained an
SRN to predict the next word in a series of sentences. Interestingly, the network initially failed. How-
ever, when the context layer was modulated, so that its working memory capacity gradually increased
over training, it succeeded. Essentially, the SRN started with a relatively short memory span and first
learned to exploit short-range (within-phrase) grammatical dependencies. Then, as working memory
increased, the network discovered longer-range dependencies, and consequently it learned to predict
sequences of words in longer, more complex sentences. Elman used these simulations to highlight
the “importance of starting small” in development (see also Newport, 1990). In particular, the model
offered a persuasive demonstration that limitations in information-processing capacity could facili-
tate early learning (i.e., developmental immaturity; Bjorklund, 1997). In the next section, we  provide a
related example from motor learning that demonstrates the same principle (Schlesinger et al., 2000).
Crucially, this shows how simple, well-used models like the SRN can help illustrate much broader
theoretical points, and subsequent work in this vein has used them to examine issues like the devel-
opmental origin of working memory differences (MacDonald & Christiansen, 2002) and the interaction
between evolution, language change, and development (Reali & Christiansen, 2009).

A second elaboration during Wave 2 was the use of modular networks (Jacobs, Jordan, & Barto,
1991; Rueckl, Cave, & Kosslyn, 1989). Like SRNs, the innovation offered by modular networks was
architectural. The conventional 3-layer network was divided into two or more specialized processing
“pathways,” often with additional layers introduced. While the modular networks of the second wave
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were still relatively far from biologically plausible, they were an important step toward designing and
testing models that incorporated known anatomical structures and functions of the brain.

Two examples of modular networks are the object-processing models of Munakata et al. (1997), and
of Mareschal et al. (1999).  Both address an intriguing question: Why  does object permanence appear to
develop earlier when measured by gaze behavior than by reaching (Mareschal, 2000)? To investigate
this question, both models use modular networks, in which one sub-network of the model controls
gaze while another sub-network controls reaching, while a sub-network common to both contains
object representations. In the Munakata model, the gaze sub-network is initially trained first, as a
proxy for earlier development in gaze compared to reaching. As expected, the model anticipates the
outcomes of occluded-object events using gaze first. While this is not surprising, the model provides
a useful demonstration of how graded internal representations can be strong enough to guide gaze,
but not enough to guide reaching.

The Mareschal model goes further by incorporating dual-stream visual processing (i.e.,
dorsal–ventral or “what” and “where” pathways; Milner & Goodale, 1995; Mishkin, Ungerleider, &
Macko, 1983). The ventral sub-network simulates feature-based processing in the temporal cortex,
while the dorsal sub-network simulates spatiotemporal processing in the parietal cortex. Unlike the
Munakata model, the entire network is trained simultaneously. A key finding from this model is that
the dorsal sub-network learns more rapidly than the ventral one. Mareschal et al. propose that while
gaze recruits the “where” or dorsal system, reaching requires integrating both systems. Consequently,
the developmental advantage of gaze over reaching behavior is due to the earlier emergence of the
“where” system.

Finally, a third innovation during the second wave challenged the fixed architecture of 3-layer
models with the use of cascade-correlation (Fahlman & Lebiere, 1990). The key feature of cascade-
correlation networks is their ability to “grow” new hidden units over time. Thus, in contrast to
conventional networks, cascade-correlation networks have a dynamic topology that adapts to the pro-
cessing demands of training. Because cascade-correlation networks develop more elaborate internal
encodings or representations over time, they can increase their representational power (Mareschal &
Shultz, 1996; Shultz et al., 1995). Indeed, cascade-correlation networks have been successfully applied
to a wide range of phenomena, including the balance-scale task, seriation, and conservation of num-
ber (Mareschal, 1992; Mareschal & Shultz, 1999; Shultz, 1998; Shultz et al., 1994), suggesting a new
dimension on which connectionist networks can learn and suggesting ways to account for qualitative
developmental change.

Perhaps the capstone of Wave 2 from a developmental perspective, however, was  the publication
of Rethinking Innateness (Elman et al., 1996), which built on the mounting complexity of connection-
ist networks and their increasing power to account for development. This volume used the logic of
connectionism (and many simulations) to articulate a clear theoretical view of development, chal-
lenging whether constructs like modularity need be innate, putting forth a clearly emergentist view
of development, and asking whether species-typical behavior need derive from innate domain-specific
knowledge. While this book did not introduce new technical advances (e.g., types of modeling), its abil-
ity to translate connectionism to basic developmental theory (with a healthy dose of neuroscience)
was a transitional moment in the development of modeling. In many ways, the purely theoretical
view it articulated enabled researchers to adopt a connectionist perspective on development without
running any models.

3.4. Wave 3 (2000–2010): diversification

While the second wave of developmental models emerged as a response to the homogeneity of the
early connectionist networks, in the third wave entirely new theoretical and computational paradigms
emerged, producing a wide diversity of learning algorithms, architectures, and modeling frameworks,
each tied to new and different conceptualizations of development and cognition. Connectionism, of
course, was not yet finished and significant development was  seen. However, three new theoretical
influences became important at this time.

First, there was a growing interest in conceptualizing cognition as embodied and situated (e.g.,
Bechtel, 1997; Schlesinger, 2001; Thelen et al., 2001). This led to dynamical-systems and agent-based
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approaches. Second, the success of connectionist modeling coupled to empirical demonstrations of
statistical learning (Gómez, 2002; Maye, Werker, & Gerken, 2002; Saffran, Aslin, & Newport, 1996; Yu
& Smith, 2007) became a problem for symbolic accounts. This led to Bayesian formulations as a way
of retaining the transparency and knowledge-based accounts of symbolic models while incorporating
sensitivity to input statistics. Finally, theoretical ideas like statistical learning that were grounded in
computational concepts (but not associated with modeling paradigms), together with the new diver-
sity of approaches for doing computational modeling, led some researchers to distill core theoretical
concepts into computational terms, but to implement them in ways that were somewhat independent
of any particular modeling paradigm.

Across paradigms, however, there was also convergence. Prior models tended to represent both the
child and the environment in a somewhat artificial manner. Now, model-builders designed models
that corresponded more closely to real-world situations and to the scale of real-world development
and tested their models in ways that aligned more closely with the experimental paradigms used to
study real children (Christiansen & Chater, 2001; McMurray et al., in press; Perone, Spencer, & Schöner,
2007; Schlesinger, 2003; Xu & Tenenbaum, 2007).

During Wave 3, connectionism was (and is still) strong. However, two  new trends have emerged.
First, many researchers shifted from the development of new modeling architectures to deeper explo-
rations of the mathematics and theoretical implication of existing ones (Elman, 2009). Second, a
number of researchers began scaling up their models substantially. For example, the Triangle model of
reading (Seidenberg & McClelland, 1989) was initially conceptualized as involving three bi-directional
mappings between orthography, phonology, and semantics. However, the initial implementation only
modeled the mapping from phonology to orthography in a single pass. More recent implementations
(Fig. 3E; Harm & Seidenberg, 2004) have implemented all three pathways, using recurrence to model
real-time decision making and demonstrating how multiple sources of information influence word
reading. Similarly, Sibley, Kello, Plaut, and Elman (2008) taught a modified SRN nearly 75,000 word
forms and discovered that such scale can be a benefit in enhancing generalization.

Beyond connectionism, dynamical systems began to offer competing computational models.
Dynamic systems were a theoretical approach to development introduced by Thelen and Smith (1996)
that emphasized non-linear dynamics, soft assembly between multiple coupled systems, embodiment
of action and cognition, and the real-time incremental nature of development. Dynamic Field Theory,
or DFT (Schutte et al., 2003; Spencer & Schöner, 2003; Thelen et al., 2001) became one of its most suc-
cessful computational models, by building these concepts into a dynamical system based on neural
population dynamics.

DFT was developed to investigate the idea that embodiment and real-time interaction with the
environment could explain many developmental phenomena. DFT is implemented in a mathemat-
ical framework that captures real-time interactions among populations of neurons. Thus one of its
strengths is its ability to capture unfolding behavior in real-time. Crucially, the DFT’s commitment
to embodiment means that it represents properties of the behavioral context (e.g., spatial location,
object color) in a reasonably natural way that parallels the experience of a child engaged in a compa-
rable task. For example, Schutte et al. (2003) use a DFT model to simulate children’s performance on a
“sandbox” version of the A-not-B search task. In this task, objects are hidden in A and B locations of a
sandbox, creating a more continuous version of this classic Piagetian task. Uniquely, DFT encodes both
the location of objects to be hidden and the rough geometry of the task space in the same perceptual
and working memory fields. Schutte et al. (2003) show how the task space influences memory in this
task and made (and confirmed) the startling prediction that in this more continuous version of the
task, even four-year-olds show some error, searching on the correct (A) side of the sand-box but in a
location that drifts to the other (B) location.

To model development, Schutte et al. (2003) hand-tuned parameters controlling the excitatory
and inhibitory connections that influence the precision of representations in memory. In particu-
lar, spatial processing in young children was  represented by large or broad excitatory connections;
development in older children was represented by relatively narrower excitatory connections, with
a corresponding increase in inhibitory connections. This successfully captured the developmental
pattern of children’s search performance between 2 and 6 years. Interestingly, linearly increment-
ing this same set of parameters can also give rise to qualitative differences in children’s midline bias
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in memory, showing drifts toward midline when young, and away when older (Schutte & Spencer,
2009).

Closely aligned with the DFT’s goal of simulating embodied real-time interactions and constraints
in the task-space is a class of models that simulates the child as an autonomous agent (Schlesinger,
2003). Rather than focusing on a specific cognitive architecture or learning algorithm, this approach
instead highlights organism–environment interaction and emphasizes the importance of simulating
the child’s cognitive processing as well as the body and the physical environment. The notions of
“body” and “environment” are flexible and may vary widely across models, such as an eye and arm
that learn to coordinate their movements to reach a nearby object (Schlesinger et al., 2000), or an
eye that learns to visually track objects that move in and out of view (Schlesinger & Parisi, 2001), or
arm/joint dynamics that are well specified in terms of weight, torsion (Berthier et al., 2005). While
much of this work reflects bodies and environments that remain stable over time, we  describe in
the final section the emerging field of developmental robotics, which is capable of modeling not only
physical growth but also real-world, dynamic environments.

Agent-based models offer several features not typically exploited by other models. First, because
agent-based models can simulate both single-agent and multi-agent scenarios, they are well-suited
to investigating questions in which social interaction plays a role. Second, in addition to capturing
changes over ontogenetic time, agent-based models can also simulate the evolutionary or phylogenetic
timescale (Schlesinger, 2004; Schlesinger & Parisi, 2007). For example, Schlesinger et al. (2000) use
an agent-based model to simulate the development of hand–eye coordination in young infants. Like
infants, the model develops reaching skill in a proximodistal pattern: At both the muscular and joint
levels, control is established over central body segments before peripheral segments (e.g., shoulder
joint vs. elbow joint). This finding complements Elman’s (1993) starting-small principle, but it emerges
autonomously, rather than through hand-tuning. Thus, in a complex task environment with multiple
degrees of freedom, the proximodistal “bias” need not be built in: If children are trying reach in an
increasingly optimal way, this constraint may  be an obligatory way station through the search space.

In contrast to these sub-symbolic approaches loosely aligned with connectionism, there were also
advances among symbolic models. The growing understanding of statistical learning combined with
the assumptions of symbolic models (e.g., innate structure, rule-based performance) led to a novel
hybrid: Bayesian models (Frank, Goodman, & Tenenbaum, 2009; Kemp, Perfors, & Tenenbaum, 2007;
Xu & Tenenbaum, 2007). Bayesian models focus on an informational (rather than a mechanistic)
account of cognition. Like other symbolic models, they operate at a higher level of abstraction than
connectionist networks (Jones & Love, 2011). However, they share with connectionism the notion that
statistical dependencies between elements in the input (e.g., visual features, linguistic labels) are fun-
damental for learning. Consequently, the central task for Bayesian learners is to establish probability
estimates for the occurrence of particular events and to update these estimates with experience. In
Bayesian systems, probabilities are acquired as knowledge used to represent the world in general.
However, the implicit assumption is made that development is geared toward acquiring knowledge
about the true state of the world, as opposed to developing knowledge that is needed for action and
implementing it in these same action systems (as in connectionism).

As a concrete example, consider the problem of learning to label a set of novel objects that vary in
shape, size, and color. When presented with this task, children not only learn to label the objects rapidly
based on only a few examples; they also consistently rely on shape as a basis for grouping objects
together with the same label – the shape bias (Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson,
2002). In a Bayesian model of this word-learning task, Kemp et al. (2007) show that across a diverse set
of objects, presenting two objects with the same shape and label (e.g., the round, green, smooth object
and the round, orange, fuzzy object are both “blickets”) can induce a shape bias to new unlabeled
objects, explaining generalization as a lawful inference over the data thus far encountered. Thus, the
Bayesian approach not only highlights children’s sensitivity to statistical regularities; it also provides
an account of how these regularities provide a structure for interpreting new experiences.

Finally, most of the modeling we have described so far is strongly paradigmatic. A set of principles
such as those of connectionism, DFT, or Bayesian approaches constrain what can be built into the
model, and in many ways the model itself is an answer to the question, “Can some complex develop-
mental phenomena derive from such principles?” In contrast to this paradigmatic approach, during
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Wave 3 a number of researchers began implementing simple computational tools to test implications
of more qualitative developmental theory. This was in some ways a response to the growing complex-
ity of more paradigmatic models and the difficulty in answering basic theoretical questions when it is
unclear which components of the model are responsible.

For example, Werker et al. (2006) reasoned that if infants learn speech categories using the statis-
tical distribution of acoustic cues, they could model the ideal learner using logistic regression (see also
McMurray & Jongman, 2011). This allowed them to ask the simple question of whether the statistics
of infant directed speech are sufficient to distinguish vowel categories in the limit. In some ways this
represents a sort of ideal learner, as logistic regression employs supervised learning, while infants
more likely engage in some sort of unsupervised process (Maye et al., 2002). Nonetheless, they found
that the model was able to learn to classify vowels and to weight language-specific cues appropriately,
lending strong credence to statistical learning approaches to speech development.

Similarly, McMurray, Aslin, et al. (2009) examined the mechanism of such learning. They argued
that infants must learn using (1) unsupervised learning and (2) iterative learning in which learning
occurs after each presentation of a stimulus. (Most Bayesian learning systems learn in “batch mode”
from all the data at once, as opposed to trial-by-trial.)

They started from a Bayesian framework (a mixture of Gaussians), but found it insufficient. How-
ever, adding a connectionist-style competition to the network allowed it to succeed and model the time
course of development. Critically, a range of connectionist architectures applied to the same problem
also requires competition between categories (McMurray, Aslin, et al., 2009; McMurray, Horst, et al.,
2009). That is, learning systems must do more than just accumulate statistics over inputs; on each input
it must attempt to identify a category, suppress competing categories and then learn. This need for
competition (or some real-time or trial-time mechanism for suppressing alternative interpretations)
may  be a general requirement of unsupervised categorization.

A number of models have also used this more paradigm-neutral approach to isolate and investi-
gate ontogenetic timescales. van Geert (1998),  for example, implemented the Piagetian constructs of
assimilation and accommodation as simple differential equations. By implementing many simultane-
ous assimilation and accommodation events and iterating over time, he showed how both qualitative
and quantitative change could emerge from the same quantitative system. Similarly, McMurray (2007;
Mitchell & McMurray, 2009) reasoned that all word learning models are essentially accumulators,
accumulating evidence for many words in parallel. They implemented and analyzed a series of mod-
els in which each word simply acquires a “point” on each trial until it reaches some threshold for
learning. This demonstrated that as long as multiple words are acquired in parallel, and words vary
in difficulty, the sudden increase in the rate of word learning during the second year (the vocabulary
spurt) is mathematically guaranteed and thus is not evidence for any specialized change on the part
of the child.

4. The past, present, and future of developmental models

4.1. Covering the theoretical/empirical landscape

Our taxonomy of modeling paradigms not only offers a classification scheme for organizing a rapidly
expanding field of modeling architecture; it also illustrates something of greater value – think of a
research question and the existing array of modeling approaches can likely handle it. But beyond
the descriptions of how a model works (e.g., timescale, static/adaptive), the space of computational
models of development has expanded such that several features of the theoretical landscape are now
well-covered.

Modeling frameworks correspond to each of the major theoretical orientations – nativism, con-
structivism, and empiricism. Connectionist models align well with both empiricist and constructivist
views, and Bayesian models are an appropriate tool for examining the influence of a priori (innate)
knowledge on learning. Existing modeling approaches also span the timescales of behavioral change,
from milliseconds and minutes up to days, months, and years.

As our examples illustrate, computational models cut across the full range of behaviors that fall
within the domain of cognitive development, including sensorimotor skill, object perception and
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categorization, speech perception and language acquisition, as well as models of planning, problem-
solving, decision-making. Of course, as Braitenberg (1984) notes, no model is a model of all these
behaviors. Instead, most models remain tractable (and offers clearer theoretical points) by focusing
on a specific developmental domain, time scale, skill, or behavior. While there is clear value in bridging
across time scales and domains (McMurray, Aslin, et al., 2009; McMurray, Horst, et al., 2009), even
here an element of simplicity, or distillation is often necessary to make theoretical advances.

4.2. What do models add?

While developmental models have become progressively more elaborate (and sometimes, more
complex), an open question is whether this trajectory reflects a path toward greater explanatory
power. In the historical context we have outlined, each wave of models is not only a response to the
limitations or shortcomings of previous models, but also a reflection of the goals and priorities of the
developmental community itself. For example, an increase in the use of eye-tracking measures over the
last several years has also increased the value of computational models that simulate eye-movements
in real-time (Schlesinger et al., 2007).

Developmental models can have a crucial role as part of the scientific-deductive process. In par-
ticular, several recurring themes can be seen across the examples here. First, each model is an
implementation of a specific theory, and when successful, provides a demonstration proof that the
theoretical account is plausible or possible. That on its own  is important. Second, there were occa-
sions where models failed or were less capable of capturing a particular developmental phenomenon
than an alternative model (e.g., models of past-tense, grammar, phoneme categorization and the
balance-scale task). Thus, simulation data provide a key metric for comparing models, and indeed,
model-builders use these data to refine and improve their models. Third, several models have pro-
vided a new perspective on the developmental phenomenon under study, sometimes suggesting a
novel methodological manipulation or a counterintuitive hypothesis later confirmed experimentally
(e.g., the sandbox search task investigated by Schutte et al., 2003). Perhaps most important, these
models have allowed us to answer questions about developmental theory itself and occasionally
revealed unexpected consequences of our theoretical assumptions (e.g., the vocabulary explosion
as an unintended consequence of parallel learning).

Across just the limited examples here, we see examples of clear theoretical advances that lie well
beyond a specific modeling framework – concepts and theories that could be implemented in multiple
ways and are of value to the non-modeling community (see Table 2). In fact, if there were a theme
to emerge across multiple models and multiple paradigms, it is this: Development often derives from
non-obvious causes – hidden factors, unexpected non-linearities and subtle interactions between
organism and environment. Computational modeling can often illuminate sources of non-obvious
causation. Indeed, it was the surprising success of many connectionist models to capture small sub-
regularities of the input that led to statistical learning, a theoretical construct that goes well beyond
connectionism. Many of these models illustrate how incremental, unidirectional change in a critical
model parameter can give rise to qualitative changes in the child – U-shaped curves, acceleration
and the like. This is not something that can be observed from empirical data alone and represents a
powerful constraint on interpretation.

4.3. Where are developmental models headed?

A number of important trends will help shape the direction of the field over the next decade. One is
the emergence of developmental robotics (Cangelosi et al., 2010; Lungarella, Metta, Pfeifer, & Sandini,
2003; Schlesinger, 2009; Vernon, Metta, & Sandini, 2007; Weng et al., 2001). In contrast to classical
AI systems, which are engineered to solve a particular problem and are given the requisite skill and
knowledge in advance, the goal of developmental robotics is to design autonomous agents that have
as little knowledge in advance as possible and must learn and develop skill through exploration and
interaction with the environment. Therefore, developmental robotics is an extension of the agent-
based approach described earlier, including not only a focus on embodiment, organism–environment
interaction, and emergent knowledge, but also the use of both simulated and real-world robotic



M. Schlesinger, B. McMurray / Cognitive Development 27 (2012) 326– 348 343

Table 2
Summary of theoretical advances made from the models discussed in this article.

Paper Architecture Finding

General
Rumelhart et al. (1986) Three-layer backprop Internal representations are required for some simple

problems.

Language development
Rumelhart and

McClelland (1986a)
Three-layer backprop Existence proof that rule-like behavior could occur in a

system with only distributed, non-symbolic
representations.
U-shaped development need not represent a change in the
learning mechanism or a switch in representational
formats; it may  derive from systematicities in the statistics
of  the task space.

Elman (1993) Simple recurrent network Limited memory capacity can be beneficial for finding
structure.

McMurray (2007) Non paradigmatic:
accumulator

Accelerating learning is a necessary by-product of parallel
learning and not a sign of any qualitative developmental
change.

McMurray, Aslin, et al.
(2009) and McMurray,
Horst, et al. (2009)

Mixture of Gaussians
(statistical learning)

Online competition may  be needed for statistical learning
to  find categories.

Visual cognition
Munakata et al. (1997) Modular neural network A graded object concept can account for differences

between tasks and ages in object permanence tasks.
Mareschal et al. (1999) Modular neural network Differential development of what/where pathway can

account for differences across tasks/ages in object
permanence tasks.

Schutte et al. (2003) Dynamic Field Theory Linear changes in precision of neural fields can lead to
qualitative differences in spatial memory.

Motor development
Schlesinger et al. (2000) Agent-based Constraints on early motor control need not be built in but

can  arise as a more optimal response to a complex
task-space.

Berthier et al. (2005) Cerebellar network model
with arm dynamics and RL

Variability (noise) and spontaneous movements may  help
infants explore the space of motor movements and lead to
better learning.

platforms (e.g., humanoid robots, wheeled robots, “insect” robots) for designing and testing com-
putational models of development.

A second influence is computational developmental neuroscience (Thivierge, 2010). This influence
reflects continuing pressure toward biologically plausible models of cognition and development and
a trend toward representing neural processes in a way that better reflects known properties of the
mammalian brain. Recent examples include work on the role of dopamine and reward-learning during
the development of gaze-following (Triesch, Teuscher, Deák, & Carlson, 2006), as well as the influence
of growth in the posterior parietal cortex on the development of visual selective attention (Schlesinger
et al., 2007) and models of the cerebellum and joint mechanics being applied to motor control (Berthier
et al., 2005).

Finally, a third and equally important influence on developmental models is the study of individual
differences. Thus far the majority of computational models of development have focused on a norma-
tive perspective. In contrast, relatively few models highlight the diversity of developmental pathways,
and in particular, the biological and environmental factors that give rise to developmental pathology
(Harm, McCandliss, & Seidenberg, 2003; Harm & Seidenberg, 1999; McMurray et al., 2010; Thomas &
Karmiloff-Smith, 2002). We  anticipate that the developmental community will see increased attention
in this area, not only because it is a comparatively understudied area, but also because researchers
in robotics have begun to investigate developmental psychopathology (Dautenhahn & Werry, 2004;
Kozima & Yasuda, 2007).
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4.4. Closing the gap between theory and research

In tracking the arc of design ⇒ test ⇒ refine characteristic of the modeling enterprise, we note a sub-
tle but significant shift in emphasis over the last 25–30 years. In the first wave, developmental models
were largely descriptive, enabling researchers to state and test theories in an explicitly mechanistic
language, and, where successful, demonstrate that the theory in principle works. The test and refine
steps were focused on getting the model to reproduce the target phenomenon. During the second and
third waves, the focus has gradually shifted away from developmental models as confirmatory tools,
and has emphasized their use as tools for inquiry and experimentation. Models now provide a bridge
in both directions between theory and research. Models not only validate theories, but also provide
feedback that helps to revise theories. At the same time, models not only reproduce core findings from
critical experiments; they also generate new predictions and suggest novel tests.

To illustrate the closed loop between developmental theory, behavioral research, and computa-
tional modeling, we highlight two examples. The Munakata et al. (1997) model, recall, which simulates
gazing and reaching behavior toward objects, learns to produce an internal representation of the target
object, which gradually decays while the target is occluded. Although this occluded-object represen-
tation is too weak to accurately guide reaching behavior, it is strong enough to guide gaze behavior.
This model started with a familiar idea – internal representations are graded – but also broke new
ground. It provided a compelling demonstration of how graded representations could be implemented
and studied in a modular neural network. It also demonstrated how a developmental gap between
reaching and gazing could emerge as a function of the relative strength of occluded-object represen-
tations. More important, these simulation findings helped reshape the ongoing debate on early object
knowledge, by highlighting the role of infants’ graded representations (Baillargeon, 2000; Haith, 1998;
Munakata, 2000; Smith, 1999; Spelke, 1998).

A second example is the paradigm shift that occurred in language learning in the 1990s. A lasting
generalization from the dozens (or hundreds) of connectionist models in the first and second waves
of modeling was the powerful role that very subtle statistics can play in giving rise to useful language
learning. Statistics like the transition probabilities between words, the distribution of phonetic cues
across utterances, or the quasi-regular mapping between elements (e.g., letters and phonemes) were
the grist on which such models learned, and these early models taught us how powerful these statistics
could be in the hands of such sensitive learning devices. At the time, work in language was largely
ignoring such processes based on the input, in favor of constructs like parameter setting and innate
constraints.

In contrast, connectionist models as a whole revealed how powerful such learning could be. This
influence reached a critical point when Saffran et al. (1996) developed the artificial language learning
paradigms, which demonstrated that human infants and adults (Saffran, Newport, Richard, Tunick, &
Barrueco, 1997) could learn via such statistics. This has turned into an incredibly fruitful enterprise
with dozens of empirical studies (Saffran & Thiessen, 2007, for a review) and numerous theoretical
accounts based on these ideas. However, the theoretical development did not stop there. Researchers’
struggle with these results led to the view that statistical learning needed to be constrained to be
effective (Newport & Aslin, 2004; but see Spencer, Blumberg, et al. 2009). This theoretical notion of
combining statistical learning to the constraints and structure offered by information processing led in
no small part to the Bayesian models now important in language study. Thus, we  see at multiple levels
how individual models make specific predictions that can refine and test both model and theory, and
how whole modeling paradigms shape theory and empirical work, which in turn can shape approaches
to modeling.

We close by noting, once again, that computational modeling cannot replace theory in develop-
mental science. In fact, as the foregoing discussion makes clear, the most important contribution of
models is to push theory in new directions and to examine the non-obvious consequences of our
theories. As our models become increasingly powerful and complex, it is equally important that they
become increasingly accessible and understood, in order to contribute to the interplay between model
and theory. As Braitenberg (1984) noted, modeling is at its best when it allows us to understand the
range of possible mechanisms that can give rise to a behavior and why. In this light, modeling can allow
us to ask questions about our theories themselves and discover new consequences to sometimes very
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old theoretical views. A number of models we have surveyed capture the notion that variation is essen-
tial for learning (Apfelbaum & McMurray, 2011; Berthier et al., 2005; Schlesinger, 2004), an idea that
harkens back to basic learning theory (Bourne & Restle, 1959; Bush & Mosteller, 1951) – variability in
the irrelevant elements can highlight the invariant relationships. The same is clearly true with respect
to computational models – only by examining and comparing many types of models will we  learn
what is irrelevant and what is relevant for understanding development.
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